Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneous trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design is shown to lead to uncontrolled robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed, and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design using two inverted pendulum platforms.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government

Full Text Available